All Issue

2024 Vol.12, Issue 4 Preview Page
31 December 2024. pp. 92-103
Abstract
References
1

S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy policy. 37, 181-189 (2009).

10.1016/j.enpol.2008.08.016
2

S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16-22 (2017).

10.1038/nmat483427994253
3

S. B. Darling, F. You, The case for organic photovoltaics. RSC Adv. 3, 17633-17648 (2013).

10.1039/c3ra42989j
4

H. Hoppe, N. S. Sariciftci, Organic solar cells: An overview. J. Mater. Res. 19, 1924-1945 (2004).

10.1557/JMR.2004.0252
5

S. Lee, H. Kim, Y. Kim, Influence of physical load on the stability of organic solar cells with polymer : Fullerene bulk heterojunction nanolayers. Current Photovoltaic Research. 4, 48-53 (2016).

10.21218/CPR.2016.4.2.048
6

O. A. Abdulrazzaq, V. Saini, S. Bourdo, E. Dervishi, A. S. Biris, Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31, 427-442 (2013).

10.1080/02726351.2013.769470
7

A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, CA. Rowe, Jr, Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells. J. Appl. Phys. 45, 230-236 (1974).

10.1063/1.1662965
8

C. W. Tang, A. C. Albrecht, Photovoltaic effects of metal-chlorophyll‐a-metal sandwich cells. J. Chem. Phys. 62, 2139-2149 (1975).

10.1063/1.430780
9

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science. 258, 1474-1476 (1992).

10.1126/science.258.5087.147417755110
10

G. Yu, A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510-4515 (1995).

10.1063/1.359792
11

Y. He, Y. Li, Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13, 1970-1983 (2011).

10.1039/C0CP01178A21180723
12

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells. Adv. Funct. Mater. 14, 1005-1011 (2004).

10.1002/adfm.200305026
13

C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 1-19 (2018).

10.1038/natrevmats.2018.3
14

P. Josse, C. Dalinot, Y. Jiang, S. Dabos-Seignon, J. Roncali, P. Blanchard, C. Cabanetos, Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular acceptors for organic solar cells. J. Mater. Chem. C. A. 4, 250-256 (2016).

10.1039/C5TA09171C
15

H. Shi, W. Fu, M. Shi, J. Ling, H. Chen, A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells. J. Mater. Chem. A. 3, 1902-1905 (2015).

10.1039/C4TA06035K
16

H. Li, F. S. Kim, G. Ren, E. C. Hollenbeck, S. Subramaniyan, S. A. Jenekhe, Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors. Angew. Chem. Int. Ed. 52, 5513-5517 (2013).

10.1002/anie.20121008523589363
17

C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv. Mater. 24, 613-636 (2012).

10.1002/adma.20110444722228467
18

Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170-1174 (2015).

10.1002/adma.20140431725580826
19

Q. Y. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela, A. Bagui, S. Kashani, J. Hou, H. Ade, The performance-stability conundrum of BTP-based organic solar cells. Joule. 5, 2129-2147 (2021).

10.1016/j.joule.2021.06.006
20

Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, 18% Efficiency organic solar cells. Sci. Bull. 65, 272-275 (2020).

10.1016/j.scib.2020.01.00136659090
21

R. Ma, T. Liu, Z. Luo, Q. Guo, Y. Xiao, Y. Chen, X. Li, S. Luo, X. Lu, M. Zhang, Y. Li, H. Yan, Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 63, 325-330 (2020).

10.1007/s11426-019-9669-3
22

Z. Li, K. Jiang, G. Yang, J. Y. L. Lai, T. Ma, J. Zhao, W. Ma, H. Yan, Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 7, 13094 (2016).

10.1038/ncomms1309427782112PMC5095169
23

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu1, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 3, 1140-1151 (2019).

10.1016/j.joule.2019.01.004
24

K. Pacheco, J. P. A. Souza, M. Koehler, E. Jayaraman, D. G. Martos, V. Turkovic, M. Madsen, L. S. Romana, Enhancing organic solar cell lifetime through humidity control using BCF in PM6: Y6 active layers. Sustainable Energy Fuels. 8, 4972-4979 (2024).

10.1039/D4SE00598H
25

D. Yun, S. Xuyao, S. Y. Lee, V. V. Sharma, H. Li, S. J. Park, Y. H. Kim, G. H. Kim, High efficiency of ternary blend organic solar cells with a BTP-4F/BTP-4H derivative. ACS Appl. Energy Mater. 7, 1243-1249 (2024).

10.1021/acsaem.3c02876
26

Q. Wei, W. Liu, Ma. Leclerc, J. Yuan, H. Chen, Y. Zou, A-DA'DA non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 63, 1352-1366 (2020).

10.1007/s11426-020-9799-4
27

O. Amargós-Reyes, A. Dzib-Chalé, J. L. Maldonado, C. A-Arrocena, Effect of doping the PM6: Y7 active layer with MoS2 nanospheres in organic solar cells. Journal of Molecular Structure. 1307, 138027 (2024).

10.1016/j.molstruc.2024.138027
28

D. Hu, H. Tang, C. Chen, P. Huang, Z. Shen, H. Li, H. Liu, C. E. Petoukhoff, J. P. Jurado, Y. Luo, P. W. K. Fong, J. Fu, L. Zhao, C. Yan, Y. Chen, P. Cheng, X. Lu, G. Li, F. Laquai, Z. Xiao, Insights into preaggregation control of y‐series nonfullerene acceptors in liquid state for highly efficient binary organic solar cells. Adv. Mater. 36, 2402833 (2024).

10.1002/adma.20240283338837820
29

K. Borse, R. Sharma, D. Gupta, A. Yella, Interface engineering through electron transport layer modification for high efficiency organic solar cells. RSC Adv. 8, 5984-599111 (2018).

10.1039/C7RA13428B35539580PMC9078166
30

H. Ma, H. L. Yip, F. Huang, A. K. Y. Jen, Interface engineering for highly efficient organic solar cells. Adv. Mater. 36, 2212236 (2024).

31

R. Steim, F. R. Kogler, C. J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20, 2499-2512 (2010).

10.1039/b921624c
32

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679 (2011).

10.1002/adma.20100430121472797
33

Y. Han, H. Dong, W. Pan, B. Liu, X. Chen, R. Huang, Z. Li, F. Li, Q. Luo, J. Zhang, Z. Wei, C. Q. Ma, An efficiency of 16.46% and a T 80 lifetime of over 4000 h for the PM6: Y6 inverted organic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer. ACS Appl. Mater. Interfaces. 13, 17869-17881 (2021).

10.1021/acsami.1c0261333847479
34

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, R. A. J. Janssen, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B. 109, 9505-9516 (2005).

10.1021/jp050745x16852143
35

X. Song, G. Liu, W. Gao, Y. Di, Y. Yang, F. Li, S. Zhou, J. Zhang, Manipulation of zinc oxide with zirconium doping for efficient inverted organic solar cells. Small. 17, 2006387 (2021).

10.1002/smll.20200638733475246
36

Y. Wang, Z. Zheng, J. Wang, X. Liu, J. Ren, C. An, S. Zhang, J. Hou, New method for preparing ZnO layer for efficient and stable organic solar cells. Adv. Mater. 35, 2208305 (2023).

10.1002/adma.20220830536380719
37

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nat. Photonics. 3, 297-302 (2009).

10.1038/nphoton.2009.69
38

S. Shao, K. Zheng, T. Pullerits, F. Zhang, Enhanced performance of inverted polymer solar cells by using poly (ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl. Mater. Interfaces. 5, 380-385 (2013).

10.1021/am302408w23272946
39

Y. Han, J. Chu, R. Zhang, L. Zhang, L. Sun, Y. Zhang, Enhanced efficiency and stability of PM6: Y6 organic solar cells using hydrophobic self-assembled monolayers. Appl. Phys. Lett. 125 (2024).

10.1063/5.0215972
40

M. Li, W. Zha, Y. Han, B. Liu, Q. Luo, C. Q. Ma, Balanced shelf and operational stability of the PM6: Y6 solar cells by using ZnO: PEI composite electron transporting layer. Org. Electron. 96, 106257 (2021).

10.1016/j.orgel.2021.106257
41

C. Hou, H. Yu, ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells, Chem. Eng. J. 407, 127192 (2021).

10.1016/j.cej.2020.127192
42

D. Yuk, J. Roe, Y. Lee, J. Kim, J. Seo, J. Yeop, T. Song, Y. Kim, Improving the optoelectrical properties of a nickel oxide hole transport layer by hydrogen peroxide treatment for efficient organic solar cells. ACS Appl. Energy Mater. (2024).

10.1021/acsaem.4c00618
43

H. Liu, Z. Ma, R. Yu, H. Gao, J. Lin, T. Hayat, A. Alsaedi, Z. Tan, Crosslinkable metal chelate as the electron transport layer for efficient and stable inverted polymer solar cells. Mater. Chem. Front. 4, 2995-3002 (2020).

10.1039/D0QM00325E
44

H. Jiang, T. Li, X. Han, X. Guo, B. Jia, K. Liu, H. Cao, Y. Lin, M. Zhang, Y. Li, X. Zhan, Passivated metal oxide n-type contacts for efficient and stable organic solar cells. ACS Appl. Energy Mater. 3, 1111-1118 (2019).

10.1021/acsaem.9b02158
45

N. Ahmad, X. Zhang, S. Yang, D. Zhang, J. Wang, S. Zafar, Y. Li, Y. Zhang, S. Hussain, Z. Cheng, A. Kumaresan, H. Zhou, Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. J. Mater. Chem. C. 7, 10795-10801 (2019).

10.1039/C9TC02781E
46

Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou, Y. Li, High‐performance inverted polymer solar cells with solution‐processed titanium chelate as electron‐collecting layer on ITO electrode. Adv. Mater. 24, 1476-1481 (2012).

10.1002/adma.20110486322407842
47

H. Fan, X. Zhu, High-performance inverted polymer solar cells with zirconium acetylacetonate buffer layers. ACS Appl. Mater. Interfaces. 8, 33856-33862 (2016).

10.1021/acsami.6b1163627960412
48

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, Y. Li, High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Sci. Rep. 4, 4691 (2014).

10.1038/srep0469124732976PMC3986729
49

H. Liu, R. Yu, Y. Bai, Y. Zeng, Y. Yi, J. Lin, J. Hou, Z. Tan, Size-controllable metal chelates as both light scattering centers and electron collection layer for high-performance polymer solar cells. CCS Chem. 3, 37-49 (2021).

10.31635/ccschem.021.202000550
50

Y. Bai, C. Zhao, R. Shi, J. Wang, F. Wang, T. Hayat, A. Alsaedi, Z. Tan, Novel cathode buffer layer of Al (acac) 3 enables efficient, large area and stable semi-transparent organic solar cells. Mater. Chem. Front. 4, 2072-2080 (2020).

10.1039/D0QM00198H
51

P. Zhou, Y. Liu, J. Gu, H. Lian, W. Lan, Y. Liao, H. Pu, B. Wei, Enhanced charge collection in non‐fullerene organic solar cells using iridium complex as an electron extraction layer. Adv. Mater. Interfaces. 8, 2100850 (2021).

10.1002/admi.202100850
52

H. L. Yip, A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994-6011 (2012).

10.1039/c2ee02806a
53

Z. Hu, K. Zhang, F. Huang, Y. Cao, Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chem. Commun. 51, 5572-5585 (2015).

10.1039/C4CC09433F25650252
54

M. Rafiq, J. Jing, Y. Liang, Z. Hu, X. Zhang, H. Tang, L. Tian, Y. Li, F. Huang, A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polym. Chem. 12, 1498-1506 (2021).

10.1039/D0PY01351J
55

F. Huang, H. Wu, D. Wang, W. Yang, Y. Cao, Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 16, 708-716 (2004).

10.1021/cm034650o
56

Y. Chen, Z. Jiang, M. Gao, S. E. Watkins, P. Lu, H. Wang, X. Chen, Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer, Appl. Phys. Lett. 100 (2012).

10.1063/1.4719522
57

J. Zhao, Y. Li, H. Lin, Y. Liu, K. Jiang, C. Mu, T. Ma, J. Y. L. Lai, H. Hu, D. Yu, H. Yan, High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 8, 520-525 (2015).

10.1039/C4EE02990A
58

Z. Mao, T. P. Le, K. Vakhshouri, R. Fernando, F. Ruan, E. Muller, E. D. Gomez, G. Sauvé, Processing additive suppresses phase separation in the active layer of organic photovoltaics based on naphthalene diimide. Org. Electron. 15, 3384-3391 (2014).

10.1016/j.orgel.2014.09.021
59

Z. Mao, T. P. Le, K. Vakhshouri, R. Fernando, F. Ruan, E. Muller, E. D. Gomez, G. Sauvé, Alcohol-soluble n-type conjugated polyelectrolyte as electron transport layer for polymer solar cells. Macromolecules. 48, 5578-5586 (2015).

10.1021/acs.macromol.5b01137
60

Z. Wu, C. Sun, S. Dong, X. F. Jiang, S. Wu, H. L. Yip, F. Huang, Y. Cao, n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 138, 2004-2013 (2016).

10.1021/jacs.5b1266426794827
61

J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li, Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020).

10.1038/s41467-020-16509-w32483159PMC7264349
62

D. Zhou, L. Han, L. Hu, S. Yang, X. Shen, Y. Li, Y. Tong, F. Wang, Z. Li, L. Chen, Bay-functionalized perylene diimide derivative cathode interfacial layer for high-performance organic solar cells. ACS Appl. Mater. Interfaces. 15, 8367-8376 (2023).

10.1021/acsami.2c2206936721874
63

J. Fu, P. W. K. Fong, H. Liu, C. S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

10.1038/s41467-023-37526-536997533PMC10063688
64

D. Zhou, Y. Li, H. Zhang, H. Zheng, X. Shen, W. You, L. Hu, L. Han, Y. Tong, L. Chen, N-type small molecule electron transport materials with DAD conjugated core for non-fullerene organic solar cells. Chem. Eng. J. 452, 139260 (2023).

10.1016/j.cej.2022.139260
65

H. Kang, S. Hong, J. Lee, K. Lee, Electrostatically self‐assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 24, 3005-3009 (2012).

10.1002/adma.20120059422553148
66

F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19, 1835-1838 (2007).

10.1002/adma.200602597
67

Y. Cai, L. Chang, L. You, B. B. Fan, H. Liu, Y. Sun, Novel nonconjugated polymer as cathode buffer layer for efficient organic solar cells. ACS Appl. Mater. Interfaces. 10, 24082-24089 (2018).

10.1021/acsami.8b0769129949344
68

D. Zhou, H. Xu, Y. Qin, X. Zhong, M. Li, B. Hu, Y. Tong, Y. Xie, Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. J. Mater. Sci. 53, 7715-7724 (2018).

10.1007/s10853-018-2081-2
69

Z. Zhang, Z. Zhang, Y. Yu, B. Zhao, S. Li, J. Zhang, S. Tan, Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. J. Energy Chem. 47, 196-202 (2020).

10.1016/j.jechem.2019.12.011
70

Y. Yu, W. Tao, L. Wang, Y. D. Tao, Z. Peng, X. Zheng, C. Xiang, B. Zhao, C. Z. Li, S. Tan, Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells. J. Mater. Chem. A. 9, 22926-22933 (2021).

10.1039/D1TA06416A
71

J. Duan, Y. Yu, M. Zeng, C. Weng, B. Zhao, S. Tan, Cationic polyelectrolytes with alkylsulfonate counterions as a cathode interface layer for high-performance polymer solar cells. ACS Appl. Mater. Interfaces. 12, 44679-44688 (2020).

10.1021/acsami.0c1134132907330
72

Y. Wang, W. Lan, N. Li, Z. Lan, Z. Li, J. Jia, F. Zhu, Stability of nonfullerene organic solar cells: from built‐in potential and interfacial passivation perspectives. Adv. Energy Mater. 9, 1900157 (2019).

10.1002/aenm.201900157
73

S. Savagatrup, A. D. Printz, T. F. O'Connor, A. V. Zaretski, D. Rodriquez, E. J. Sawyer, K. M. Rajan, R. I. Acosta, S. E. Root, D. J. Lipomi, Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy Environ. Sci. 8, 55-80 (2015).

10.1039/C4EE02657H
74

N. Li, I. McCulloch, C. J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355-1361 (2018).

10.1039/C8EE00151K
75

J. U. Lee, J. W. Jung, J. W. Jo, W. H. Jo, Degradation and stability of polymer-based solar cells. J. Mater. Chem. C. 22, 24265-24283 (2012).

10.1039/c2jm33645f
76

H. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, J. H. Dickerson, W. P. Hess, Recent progress in degradation and stabilization of organic solar cells. J. Power Sources. 264, 168-183 (2014).

10.1016/j.jpowsour.2014.04.080
77

M. A. Green, Solar cells: operating principles, technology, and system applications. Englewood Cliffs (1982).

78

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, J. T. Yates Jr, A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer. Sol. Energy Mater. Sol. Cells. 95, 1123-1130 (2011).

10.1016/j.solmat.2010.12.030
79

E. Voroshazi, B. Verreet, T. Aernouts, P. Heremans, Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cells. Sol. Energy Mater. Sol. Cells. 95, 1303-1307 (2011).

10.1016/j.solmat.2010.09.007
80

M. Manceau, A. Rivaton, J. L. Gardette, S. Guillerez, N. Lemaître, The mechanism of photo-and thermooxidation of poly (3-hexylthiophene)(P3HT) reconsidered. Polym. Degrad. Stab. 94, 898-907 (2009).

10.1016/j.polymdegradstab.2009.03.005
81

S. Chambon, A. Rivaton, J. L. Gardette, M. Firon, Photo-and thermo-oxidation of poly (p-phenylene-vinylene) and phenylene-vinylene oligomer. Polym. Degrad. Stab. 96, 1149-1158 (2011).

10.1016/j.polymdegradstab.2011.02.002
82

S. Holdcroft, A photochemical study of poly (3-hexylthiophene). Macromolecules. 24, 4834-4838 (1991).

10.1021/ma00017a017
83

B. Wu, Z. Wu, Q. Yang, F. Zhu, T. W. Ng, C. S. Lee, S. H. Cheung, S. K. So, Improvement of charge collection and performance reproducibility in inverted organic solar cells by suppression of ZnO subgap states. ACS Appl. Mater. Interfaces. 8, 14717-14724 (2016).

10.1021/acsami.6b0361927224960
84

D. F. Deschler, A. De Sio, E. Von Hauff, P. Kutka, T. Sauermann, H. J. Egelhaaf, J. Hauch, E. D. Como, The effect of ageing on exciton dynamics, charge separation, and recombination in P3HT/PCBM photovoltaic blends. Adv. Funct. Mater. 22, 1461-1469 (2012).

10.1002/adfm.201101923
85

Y. Zhao, Z. Wu, X. Liu, Z. Zhong, R. Zhu, J. Yu, Revealing the photo-degradation mechanism of PM6: Y6 based high-efficiency organic solar cells. J. Mater. Chem. C. 9, 13972-13980 (2021).

10.1039/D1TC03655F
86

M. Li, W. Zha, Y. Han, B. Liu, Q. Luo, C. Q. Ma, Balanced shelf and operational stability of the PM6: Y6 solar cells by using ZnO: PEI composite electron transporting layer. Org. Electron. 96, 106257 (2021).

10.1016/j.orgel.2021.106257
87

T. Liu, Q. C. Burlingame, M. R. Ivancevic, X. Liu, J. Hu, B. P. Rand, Y. L. Loo, Photochemical decomposition of Y‐series non‐fullerene acceptors is responsible for degradation of high‐efficiency organic solar cells. Adv. Energy Mater. 13, 2300046, (2023)

10.1002/aenm.202300046
88

T. P. A. van der Pol, B. T. van Gorkom, W. F. M. van Geel, J. Littmann, M. M. Wienk, R. A. J. Janssen, Origin, nature, and location of defects in PM6: Y6 organic solar cells. Adv. Energy Mater. 13, 2300003 (2023).

10.1002/aenm.202300003
89

J. B. Patel, P. Tiwana, N. Seidler, G.E. Morse, O.R. Lozman, M.B. Johnston, L.M. Herz, Effect of ultraviolet radiation on organic photovoltaic materials and devices. ACS Appl. Mater. Interfaces. 11, 21543-21551 (2019).

10.1021/acsami.9b0482831124649PMC7007002
90

L. Y. Su, H. H. Huang, C. E. Tsai, C. H. Hou, J. J. Shyue, C. H. Lu, C. W. Pao, M. H. Yu, L. Wang, C. C. Chueh, Improving thermal and photostability of polymer solar cells by robust interface engineering. Small. 18, 2107834 (2022).

10.1002/smll.20210783435532078
91

N. Gasparini, S. H. K. Paleti, J. Bertrandie, G. Cai, G. Zhang, A. Wadsworth, X. Lu, H. L. Yip, I. M. Culloch, D. Baran, Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371-1379 (2020).

10.1021/acsenergylett.0c00604
92

Y. Cui, Z. Chen, P. Zhu, W. Ma, H. Zhu, X. Liao, Y. Chen, Enhancing photostability and power conversion efficiency of organic solar cells by a "sunscreen" ternary strategy. Sci. China Chem. 66, 1179-1189 (2023).

10.1007/s11426-022-1517-2
93

C. H. Peters, I. T. Sachs‐Quintana, W. R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z. M. Beiley, E. T. Hoke, A. Salleo, M. D. McGehee, The mechanism of burn‐in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663-668 (2012).

10.1002/adma.20110301021989825
94

D. H. Yun, G. Y. Shin, Y. H. Jung , Y. W. Ha, G. H. Kim, Ternary blend organic solar cells trends based on PM6:Y6. Current Photovoltaic Research. 11, 79-86 (2023).

95

K. N. Zhang, X. Y. Du, L. Yan, Y. J. Pu, K. Tajima, X. Wang, X. T. Hao, Organic photovoltaic stability: Understanding the role of engineering exciton and charge carrier dynamics from recent progress. Small Methods. 8, 2300397 (2024).

10.1002/smtd.20230039737204077
96

N. Chander, S. Singh, S. S. K. Iyer, Stability and reliability of P3HT: PC61BM inverted organic solar cells. Sol. Energy Mater. Sol. Cells. 161, 407-415 (2017).

10.1016/j.solmat.2016.12.020
97

J. Kim, Y. Lee, J. Y. Kim, H. J. Song, J. Song, H. Lee, C. Lee, Analysis of the improved thermal stability of Al-doped ZnO-adopted organic solar cells. Appl. Phys. Lett. 118 (2021).

10.1063/5.0032729
98

T. Wang, A. J. Pearson, A. D. F. Dunbar, P. A. Staniec, D. C. Watters, H. Yi, A. J. Ryan, R. A. L. Jones, A. Iraqi, D. G. Lidzey, Correlating structure with function in thermally annealed PCDTBT: PC70BM photovoltaic blends. Adv. Funct. Mater. 22, 1399-1408 (2012).

10.1002/adfm.201102510
99

L. Duan, Y. Zhang, M. He, R. Deng, H. Yi, Q. Wei, Y. Zou, A. Uddin, Burn-in degradation mechanism identified for small molecular acceptor-based high-efficiency nonfullerene organic solar cells. ACS Appl. Mater. Interfaces. 12, 27433-27442 (2020).

10.1021/acsami.0c0597832438797
100

B. Watts, W. J. Belcher, L. Thomsen, H. Ade, P. C. Dastoor, A quantitative study of PCBM diffusion during annealing of P3HT: PCBM blend films. Macromolecules. 42, 8392-8397 (2009).

10.1021/ma901444u
101

S. Lee, J. Seo, J. Jeong, C. Lee, M. Song, H. Kim, Y. Kim, Effect of thermal treatment on the performance and nanostructures in polymer solar cells with PTB7-Th: PC 71 BM bulk heterojunction layers. Current Photovoltaic Research. 5. 69-74 (2017).

102

A. Facchetti, π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733-758 (2011).

10.1021/cm102419z
103

S. Alam, H. Aldosari, C. E. Petoukhoff, T. Váry, W. Althobaiti, M. Alqurashi, H. Tang, J. I. Khan, V. Nádaždy, P. M. Buschbaum, G. C. Welch, F. Laquai, Thermally‐induced degradation in PM6: Y6‐based bulk heterojunction organic solar cells. Adv. Funct. Mater. 34, 2308076 (2024).

10.1002/adfm.202308076
104

E. M. Speller, A. J. Clarke, J. Luke, H. K. H. Lee, J. R. Durrant, N. Li, T. Wang, H. C. Wong, J. S. Kim, W. C. Tsoi, Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A. 7, 23361-23377 (2019).

10.1039/C9TA05235F
105

Z. Zhang, J. Miao, Z. Ding, B. Kan, B. Lin, X. Wan, W. Ma, Y. Chen, X. Long, C. Dou, J. Zhang, J. Liu, L. Wang, Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 10, 3271 (2019).

10.1038/s41467-019-10984-631332173PMC6646397
106

W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang, Y. Wu, W. Wang, J. Guo, Q. Wu, M. Shi, H. Li, C. Yang, J. Min, Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 11, 1218 (2020).

10.1038/s41467-020-14926-532139697PMC7057953
107

J. Xin, C. Zhao, Z. Geng, W. Xue, Z. Chen, C. Song, H. Yan, Q. Liang, Z. Miao, W. Ma, J. Liu, Elucidate the Thermal Degradation Mechanism of Y6‐Based Organic Solar Cells by Establishing Structure‐Property Correlation. Adv. Energy Mater. 2401433 (2024).

10.1002/aenm.202401433
108

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 10, 61-66 (2009).

10.1016/j.orgel.2008.10.008
109

H. J. Son, H. K. Park, J. Y. Moon, B. K. Ju, S. H. Kim, Thermal degradation related to the PEDOT: PSS hole transport layer and back electrode of the flexible inverted organic photovoltaic module. Sustainable Energy Fuels. 4, 1974-1983 (2020).

10.1039/C9SE00811J
110

A. Al-Ahmad, B. Vaughan, J. Holdsworth, W. Belcher, X. Zhou, P. Dastoor, The role of the electron transport layer in the degradation of organic photovoltaic cells. Coatings. 12, 1071 (2022).

10.3390/coatings12081071
111

J. Kim, Y. Lee, J. Y. Kim, H. J. Song, J. Song, H. Lee, C. Lee, Analysis of the improved thermal stability of Al-doped ZnO-adopted organic solar cells. Appl. Phys. Lett. 118 (2021).

10.1063/5.0032729
112

J. Bertrandie, A. Sharma, N. Gasparini, D. R. Villalva, S. H. K. Paleti, N. Wehbe, J. Troughton, D. Baran, Air-processable and thermally stable hole transport layer for non-fullerene organic solar cells. ACS Appl. Energy Mater. 5, 1023-1030 (2022).

10.1021/acsaem.1c03378
113

I. C. Ghosekar, G. C. Patil, Performance analysis and thermal reliability study of multilayer organic solar cells. IEEE Trans. Device Mater. Reliab. 19, 572-580 (2019).

10.1109/TDMR.2019.2933312
114

Y. He, T. Heumüller, W. Lai, G. Feng, A. Classen, X. Du, C. Liu, W. Li, N. Li, C. J. Brabec, Evidencing excellent thermal‐and photostability for single‐component organic solar cells with inherently built‐in microstructure. Adv. Energy Mater. 9, 1900409 (2019).

10.1002/aenm.201900409
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 12
  • No :4
  • Pages :92-103
  • Received Date : 2024-10-15
  • Revised Date : 2024-11-27
  • Accepted Date : 2024-11-29