S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy policy. 37, 181-189 (2009).
10.1016/j.enpol.2008.08.016S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16-22 (2017).
10.1038/nmat483427994253S. B. Darling, F. You, The case for organic photovoltaics. RSC Adv. 3, 17633-17648 (2013).
10.1039/c3ra42989jH. Hoppe, N. S. Sariciftci, Organic solar cells: An overview. J. Mater. Res. 19, 1924-1945 (2004).
10.1557/JMR.2004.0252S. Lee, H. Kim, Y. Kim, Influence of physical load on the stability of organic solar cells with polymer : Fullerene bulk heterojunction nanolayers. Current Photovoltaic Research. 4, 48-53 (2016).
10.21218/CPR.2016.4.2.048O. A. Abdulrazzaq, V. Saini, S. Bourdo, E. Dervishi, A. S. Biris, Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31, 427-442 (2013).
10.1080/02726351.2013.769470A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, CA. Rowe, Jr, Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells. J. Appl. Phys. 45, 230-236 (1974).
10.1063/1.1662965C. W. Tang, A. C. Albrecht, Photovoltaic effects of metal-chlorophyll‐a-metal sandwich cells. J. Chem. Phys. 62, 2139-2149 (1975).
10.1063/1.430780N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science. 258, 1474-1476 (1992).
10.1126/science.258.5087.147417755110G. Yu, A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510-4515 (1995).
10.1063/1.359792Y. He, Y. Li, Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13, 1970-1983 (2011).
10.1039/C0CP01178A21180723H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells. Adv. Funct. Mater. 14, 1005-1011 (2004).
10.1002/adfm.200305026C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 1-19 (2018).
10.1038/natrevmats.2018.3P. Josse, C. Dalinot, Y. Jiang, S. Dabos-Seignon, J. Roncali, P. Blanchard, C. Cabanetos, Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular acceptors for organic solar cells. J. Mater. Chem. C. A. 4, 250-256 (2016).
10.1039/C5TA09171CH. Shi, W. Fu, M. Shi, J. Ling, H. Chen, A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells. J. Mater. Chem. A. 3, 1902-1905 (2015).
10.1039/C4TA06035KH. Li, F. S. Kim, G. Ren, E. C. Hollenbeck, S. Subramaniyan, S. A. Jenekhe, Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors. Angew. Chem. Int. Ed. 52, 5513-5517 (2013).
10.1002/anie.20121008523589363C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv. Mater. 24, 613-636 (2012).
10.1002/adma.20110444722228467Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170-1174 (2015).
10.1002/adma.20140431725580826Q. Y. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela, A. Bagui, S. Kashani, J. Hou, H. Ade, The performance-stability conundrum of BTP-based organic solar cells. Joule. 5, 2129-2147 (2021).
10.1016/j.joule.2021.06.006Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, 18% Efficiency organic solar cells. Sci. Bull. 65, 272-275 (2020).
10.1016/j.scib.2020.01.00136659090R. Ma, T. Liu, Z. Luo, Q. Guo, Y. Xiao, Y. Chen, X. Li, S. Luo, X. Lu, M. Zhang, Y. Li, H. Yan, Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 63, 325-330 (2020).
10.1007/s11426-019-9669-3Z. Li, K. Jiang, G. Yang, J. Y. L. Lai, T. Ma, J. Zhao, W. Ma, H. Yan, Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 7, 13094 (2016).
10.1038/ncomms1309427782112PMC5095169J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu1, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 3, 1140-1151 (2019).
10.1016/j.joule.2019.01.004K. Pacheco, J. P. A. Souza, M. Koehler, E. Jayaraman, D. G. Martos, V. Turkovic, M. Madsen, L. S. Romana, Enhancing organic solar cell lifetime through humidity control using BCF in PM6: Y6 active layers. Sustainable Energy Fuels. 8, 4972-4979 (2024).
10.1039/D4SE00598HD. Yun, S. Xuyao, S. Y. Lee, V. V. Sharma, H. Li, S. J. Park, Y. H. Kim, G. H. Kim, High efficiency of ternary blend organic solar cells with a BTP-4F/BTP-4H derivative. ACS Appl. Energy Mater. 7, 1243-1249 (2024).
10.1021/acsaem.3c02876Q. Wei, W. Liu, Ma. Leclerc, J. Yuan, H. Chen, Y. Zou, A-DA'DA non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 63, 1352-1366 (2020).
10.1007/s11426-020-9799-4O. Amargós-Reyes, A. Dzib-Chalé, J. L. Maldonado, C. A-Arrocena, Effect of doping the PM6: Y7 active layer with MoS2 nanospheres in organic solar cells. Journal of Molecular Structure. 1307, 138027 (2024).
10.1016/j.molstruc.2024.138027D. Hu, H. Tang, C. Chen, P. Huang, Z. Shen, H. Li, H. Liu, C. E. Petoukhoff, J. P. Jurado, Y. Luo, P. W. K. Fong, J. Fu, L. Zhao, C. Yan, Y. Chen, P. Cheng, X. Lu, G. Li, F. Laquai, Z. Xiao, Insights into preaggregation control of y‐series nonfullerene acceptors in liquid state for highly efficient binary organic solar cells. Adv. Mater. 36, 2402833 (2024).
10.1002/adma.20240283338837820K. Borse, R. Sharma, D. Gupta, A. Yella, Interface engineering through electron transport layer modification for high efficiency organic solar cells. RSC Adv. 8, 5984-599111 (2018).
10.1039/C7RA13428B35539580PMC9078166H. Ma, H. L. Yip, F. Huang, A. K. Y. Jen, Interface engineering for highly efficient organic solar cells. Adv. Mater. 36, 2212236 (2024).
R. Steim, F. R. Kogler, C. J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20, 2499-2512 (2010).
10.1039/b921624cY. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679 (2011).
10.1002/adma.20100430121472797Y. Han, H. Dong, W. Pan, B. Liu, X. Chen, R. Huang, Z. Li, F. Li, Q. Luo, J. Zhang, Z. Wei, C. Q. Ma, An efficiency of 16.46% and a T 80 lifetime of over 4000 h for the PM6: Y6 inverted organic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer. ACS Appl. Mater. Interfaces. 13, 17869-17881 (2021).
10.1021/acsami.1c0261333847479W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, R. A. J. Janssen, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B. 109, 9505-9516 (2005).
10.1021/jp050745x16852143X. Song, G. Liu, W. Gao, Y. Di, Y. Yang, F. Li, S. Zhou, J. Zhang, Manipulation of zinc oxide with zirconium doping for efficient inverted organic solar cells. Small. 17, 2006387 (2021).
10.1002/smll.20200638733475246Y. Wang, Z. Zheng, J. Wang, X. Liu, J. Ren, C. An, S. Zhang, J. Hou, New method for preparing ZnO layer for efficient and stable organic solar cells. Adv. Mater. 35, 2208305 (2023).
10.1002/adma.20220830536380719S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nat. Photonics. 3, 297-302 (2009).
10.1038/nphoton.2009.69S. Shao, K. Zheng, T. Pullerits, F. Zhang, Enhanced performance of inverted polymer solar cells by using poly (ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl. Mater. Interfaces. 5, 380-385 (2013).
10.1021/am302408w23272946Y. Han, J. Chu, R. Zhang, L. Zhang, L. Sun, Y. Zhang, Enhanced efficiency and stability of PM6: Y6 organic solar cells using hydrophobic self-assembled monolayers. Appl. Phys. Lett. 125 (2024).
10.1063/5.0215972M. Li, W. Zha, Y. Han, B. Liu, Q. Luo, C. Q. Ma, Balanced shelf and operational stability of the PM6: Y6 solar cells by using ZnO: PEI composite electron transporting layer. Org. Electron. 96, 106257 (2021).
10.1016/j.orgel.2021.106257C. Hou, H. Yu, ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells, Chem. Eng. J. 407, 127192 (2021).
10.1016/j.cej.2020.127192D. Yuk, J. Roe, Y. Lee, J. Kim, J. Seo, J. Yeop, T. Song, Y. Kim, Improving the optoelectrical properties of a nickel oxide hole transport layer by hydrogen peroxide treatment for efficient organic solar cells. ACS Appl. Energy Mater. (2024).
10.1021/acsaem.4c00618H. Liu, Z. Ma, R. Yu, H. Gao, J. Lin, T. Hayat, A. Alsaedi, Z. Tan, Crosslinkable metal chelate as the electron transport layer for efficient and stable inverted polymer solar cells. Mater. Chem. Front. 4, 2995-3002 (2020).
10.1039/D0QM00325EH. Jiang, T. Li, X. Han, X. Guo, B. Jia, K. Liu, H. Cao, Y. Lin, M. Zhang, Y. Li, X. Zhan, Passivated metal oxide n-type contacts for efficient and stable organic solar cells. ACS Appl. Energy Mater. 3, 1111-1118 (2019).
10.1021/acsaem.9b02158N. Ahmad, X. Zhang, S. Yang, D. Zhang, J. Wang, S. Zafar, Y. Li, Y. Zhang, S. Hussain, Z. Cheng, A. Kumaresan, H. Zhou, Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells. J. Mater. Chem. C. 7, 10795-10801 (2019).
10.1039/C9TC02781EZ. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou, Y. Li, High‐performance inverted polymer solar cells with solution‐processed titanium chelate as electron‐collecting layer on ITO electrode. Adv. Mater. 24, 1476-1481 (2012).
10.1002/adma.20110486322407842H. Fan, X. Zhu, High-performance inverted polymer solar cells with zirconium acetylacetonate buffer layers. ACS Appl. Mater. Interfaces. 8, 33856-33862 (2016).
10.1021/acsami.6b1163627960412Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, Y. Li, High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Sci. Rep. 4, 4691 (2014).
10.1038/srep0469124732976PMC3986729H. Liu, R. Yu, Y. Bai, Y. Zeng, Y. Yi, J. Lin, J. Hou, Z. Tan, Size-controllable metal chelates as both light scattering centers and electron collection layer for high-performance polymer solar cells. CCS Chem. 3, 37-49 (2021).
10.31635/ccschem.021.202000550Y. Bai, C. Zhao, R. Shi, J. Wang, F. Wang, T. Hayat, A. Alsaedi, Z. Tan, Novel cathode buffer layer of Al (acac) 3 enables efficient, large area and stable semi-transparent organic solar cells. Mater. Chem. Front. 4, 2072-2080 (2020).
10.1039/D0QM00198HP. Zhou, Y. Liu, J. Gu, H. Lian, W. Lan, Y. Liao, H. Pu, B. Wei, Enhanced charge collection in non‐fullerene organic solar cells using iridium complex as an electron extraction layer. Adv. Mater. Interfaces. 8, 2100850 (2021).
10.1002/admi.202100850H. L. Yip, A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994-6011 (2012).
10.1039/c2ee02806aZ. Hu, K. Zhang, F. Huang, Y. Cao, Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chem. Commun. 51, 5572-5585 (2015).
10.1039/C4CC09433F25650252M. Rafiq, J. Jing, Y. Liang, Z. Hu, X. Zhang, H. Tang, L. Tian, Y. Li, F. Huang, A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polym. Chem. 12, 1498-1506 (2021).
10.1039/D0PY01351JF. Huang, H. Wu, D. Wang, W. Yang, Y. Cao, Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 16, 708-716 (2004).
10.1021/cm034650oY. Chen, Z. Jiang, M. Gao, S. E. Watkins, P. Lu, H. Wang, X. Chen, Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer, Appl. Phys. Lett. 100 (2012).
10.1063/1.4719522J. Zhao, Y. Li, H. Lin, Y. Liu, K. Jiang, C. Mu, T. Ma, J. Y. L. Lai, H. Hu, D. Yu, H. Yan, High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 8, 520-525 (2015).
10.1039/C4EE02990AZ. Mao, T. P. Le, K. Vakhshouri, R. Fernando, F. Ruan, E. Muller, E. D. Gomez, G. Sauvé, Processing additive suppresses phase separation in the active layer of organic photovoltaics based on naphthalene diimide. Org. Electron. 15, 3384-3391 (2014).
10.1016/j.orgel.2014.09.021Z. Mao, T. P. Le, K. Vakhshouri, R. Fernando, F. Ruan, E. Muller, E. D. Gomez, G. Sauvé, Alcohol-soluble n-type conjugated polyelectrolyte as electron transport layer for polymer solar cells. Macromolecules. 48, 5578-5586 (2015).
10.1021/acs.macromol.5b01137Z. Wu, C. Sun, S. Dong, X. F. Jiang, S. Wu, H. L. Yip, F. Huang, Y. Cao, n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 138, 2004-2013 (2016).
10.1021/jacs.5b1266426794827J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li, Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020).
10.1038/s41467-020-16509-w32483159PMC7264349D. Zhou, L. Han, L. Hu, S. Yang, X. Shen, Y. Li, Y. Tong, F. Wang, Z. Li, L. Chen, Bay-functionalized perylene diimide derivative cathode interfacial layer for high-performance organic solar cells. ACS Appl. Mater. Interfaces. 15, 8367-8376 (2023).
10.1021/acsami.2c2206936721874J. Fu, P. W. K. Fong, H. Liu, C. S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).
10.1038/s41467-023-37526-536997533PMC10063688D. Zhou, Y. Li, H. Zhang, H. Zheng, X. Shen, W. You, L. Hu, L. Han, Y. Tong, L. Chen, N-type small molecule electron transport materials with DAD conjugated core for non-fullerene organic solar cells. Chem. Eng. J. 452, 139260 (2023).
10.1016/j.cej.2022.139260H. Kang, S. Hong, J. Lee, K. Lee, Electrostatically self‐assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 24, 3005-3009 (2012).
10.1002/adma.20120059422553148F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19, 1835-1838 (2007).
10.1002/adma.200602597Y. Cai, L. Chang, L. You, B. B. Fan, H. Liu, Y. Sun, Novel nonconjugated polymer as cathode buffer layer for efficient organic solar cells. ACS Appl. Mater. Interfaces. 10, 24082-24089 (2018).
10.1021/acsami.8b0769129949344D. Zhou, H. Xu, Y. Qin, X. Zhong, M. Li, B. Hu, Y. Tong, Y. Xie, Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. J. Mater. Sci. 53, 7715-7724 (2018).
10.1007/s10853-018-2081-2Z. Zhang, Z. Zhang, Y. Yu, B. Zhao, S. Li, J. Zhang, S. Tan, Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. J. Energy Chem. 47, 196-202 (2020).
10.1016/j.jechem.2019.12.011Y. Yu, W. Tao, L. Wang, Y. D. Tao, Z. Peng, X. Zheng, C. Xiang, B. Zhao, C. Z. Li, S. Tan, Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells. J. Mater. Chem. A. 9, 22926-22933 (2021).
10.1039/D1TA06416AJ. Duan, Y. Yu, M. Zeng, C. Weng, B. Zhao, S. Tan, Cationic polyelectrolytes with alkylsulfonate counterions as a cathode interface layer for high-performance polymer solar cells. ACS Appl. Mater. Interfaces. 12, 44679-44688 (2020).
10.1021/acsami.0c1134132907330Y. Wang, W. Lan, N. Li, Z. Lan, Z. Li, J. Jia, F. Zhu, Stability of nonfullerene organic solar cells: from built‐in potential and interfacial passivation perspectives. Adv. Energy Mater. 9, 1900157 (2019).
10.1002/aenm.201900157S. Savagatrup, A. D. Printz, T. F. O'Connor, A. V. Zaretski, D. Rodriquez, E. J. Sawyer, K. M. Rajan, R. I. Acosta, S. E. Root, D. J. Lipomi, Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy Environ. Sci. 8, 55-80 (2015).
10.1039/C4EE02657HN. Li, I. McCulloch, C. J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355-1361 (2018).
10.1039/C8EE00151KJ. U. Lee, J. W. Jung, J. W. Jo, W. H. Jo, Degradation and stability of polymer-based solar cells. J. Mater. Chem. C. 22, 24265-24283 (2012).
10.1039/c2jm33645fH. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, J. H. Dickerson, W. P. Hess, Recent progress in degradation and stabilization of organic solar cells. J. Power Sources. 264, 168-183 (2014).
10.1016/j.jpowsour.2014.04.080M. A. Green, Solar cells: operating principles, technology, and system applications. Englewood Cliffs (1982).
J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, J. T. Yates Jr, A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer. Sol. Energy Mater. Sol. Cells. 95, 1123-1130 (2011).
10.1016/j.solmat.2010.12.030E. Voroshazi, B. Verreet, T. Aernouts, P. Heremans, Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cells. Sol. Energy Mater. Sol. Cells. 95, 1303-1307 (2011).
10.1016/j.solmat.2010.09.007M. Manceau, A. Rivaton, J. L. Gardette, S. Guillerez, N. Lemaître, The mechanism of photo-and thermooxidation of poly (3-hexylthiophene)(P3HT) reconsidered. Polym. Degrad. Stab. 94, 898-907 (2009).
10.1016/j.polymdegradstab.2009.03.005S. Chambon, A. Rivaton, J. L. Gardette, M. Firon, Photo-and thermo-oxidation of poly (p-phenylene-vinylene) and phenylene-vinylene oligomer. Polym. Degrad. Stab. 96, 1149-1158 (2011).
10.1016/j.polymdegradstab.2011.02.002S. Holdcroft, A photochemical study of poly (3-hexylthiophene). Macromolecules. 24, 4834-4838 (1991).
10.1021/ma00017a017B. Wu, Z. Wu, Q. Yang, F. Zhu, T. W. Ng, C. S. Lee, S. H. Cheung, S. K. So, Improvement of charge collection and performance reproducibility in inverted organic solar cells by suppression of ZnO subgap states. ACS Appl. Mater. Interfaces. 8, 14717-14724 (2016).
10.1021/acsami.6b0361927224960D. F. Deschler, A. De Sio, E. Von Hauff, P. Kutka, T. Sauermann, H. J. Egelhaaf, J. Hauch, E. D. Como, The effect of ageing on exciton dynamics, charge separation, and recombination in P3HT/PCBM photovoltaic blends. Adv. Funct. Mater. 22, 1461-1469 (2012).
10.1002/adfm.201101923Y. Zhao, Z. Wu, X. Liu, Z. Zhong, R. Zhu, J. Yu, Revealing the photo-degradation mechanism of PM6: Y6 based high-efficiency organic solar cells. J. Mater. Chem. C. 9, 13972-13980 (2021).
10.1039/D1TC03655FM. Li, W. Zha, Y. Han, B. Liu, Q. Luo, C. Q. Ma, Balanced shelf and operational stability of the PM6: Y6 solar cells by using ZnO: PEI composite electron transporting layer. Org. Electron. 96, 106257 (2021).
10.1016/j.orgel.2021.106257T. Liu, Q. C. Burlingame, M. R. Ivancevic, X. Liu, J. Hu, B. P. Rand, Y. L. Loo, Photochemical decomposition of Y‐series non‐fullerene acceptors is responsible for degradation of high‐efficiency organic solar cells. Adv. Energy Mater. 13, 2300046, (2023)
10.1002/aenm.202300046T. P. A. van der Pol, B. T. van Gorkom, W. F. M. van Geel, J. Littmann, M. M. Wienk, R. A. J. Janssen, Origin, nature, and location of defects in PM6: Y6 organic solar cells. Adv. Energy Mater. 13, 2300003 (2023).
10.1002/aenm.202300003J. B. Patel, P. Tiwana, N. Seidler, G.E. Morse, O.R. Lozman, M.B. Johnston, L.M. Herz, Effect of ultraviolet radiation on organic photovoltaic materials and devices. ACS Appl. Mater. Interfaces. 11, 21543-21551 (2019).
10.1021/acsami.9b0482831124649PMC7007002L. Y. Su, H. H. Huang, C. E. Tsai, C. H. Hou, J. J. Shyue, C. H. Lu, C. W. Pao, M. H. Yu, L. Wang, C. C. Chueh, Improving thermal and photostability of polymer solar cells by robust interface engineering. Small. 18, 2107834 (2022).
10.1002/smll.20210783435532078N. Gasparini, S. H. K. Paleti, J. Bertrandie, G. Cai, G. Zhang, A. Wadsworth, X. Lu, H. L. Yip, I. M. Culloch, D. Baran, Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371-1379 (2020).
10.1021/acsenergylett.0c00604Y. Cui, Z. Chen, P. Zhu, W. Ma, H. Zhu, X. Liao, Y. Chen, Enhancing photostability and power conversion efficiency of organic solar cells by a "sunscreen" ternary strategy. Sci. China Chem. 66, 1179-1189 (2023).
10.1007/s11426-022-1517-2C. H. Peters, I. T. Sachs‐Quintana, W. R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z. M. Beiley, E. T. Hoke, A. Salleo, M. D. McGehee, The mechanism of burn‐in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663-668 (2012).
10.1002/adma.20110301021989825D. H. Yun, G. Y. Shin, Y. H. Jung , Y. W. Ha, G. H. Kim, Ternary blend organic solar cells trends based on PM6:Y6. Current Photovoltaic Research. 11, 79-86 (2023).
K. N. Zhang, X. Y. Du, L. Yan, Y. J. Pu, K. Tajima, X. Wang, X. T. Hao, Organic photovoltaic stability: Understanding the role of engineering exciton and charge carrier dynamics from recent progress. Small Methods. 8, 2300397 (2024).
10.1002/smtd.20230039737204077N. Chander, S. Singh, S. S. K. Iyer, Stability and reliability of P3HT: PC61BM inverted organic solar cells. Sol. Energy Mater. Sol. Cells. 161, 407-415 (2017).
10.1016/j.solmat.2016.12.020J. Kim, Y. Lee, J. Y. Kim, H. J. Song, J. Song, H. Lee, C. Lee, Analysis of the improved thermal stability of Al-doped ZnO-adopted organic solar cells. Appl. Phys. Lett. 118 (2021).
10.1063/5.0032729T. Wang, A. J. Pearson, A. D. F. Dunbar, P. A. Staniec, D. C. Watters, H. Yi, A. J. Ryan, R. A. L. Jones, A. Iraqi, D. G. Lidzey, Correlating structure with function in thermally annealed PCDTBT: PC70BM photovoltaic blends. Adv. Funct. Mater. 22, 1399-1408 (2012).
10.1002/adfm.201102510L. Duan, Y. Zhang, M. He, R. Deng, H. Yi, Q. Wei, Y. Zou, A. Uddin, Burn-in degradation mechanism identified for small molecular acceptor-based high-efficiency nonfullerene organic solar cells. ACS Appl. Mater. Interfaces. 12, 27433-27442 (2020).
10.1021/acsami.0c0597832438797B. Watts, W. J. Belcher, L. Thomsen, H. Ade, P. C. Dastoor, A quantitative study of PCBM diffusion during annealing of P3HT: PCBM blend films. Macromolecules. 42, 8392-8397 (2009).
10.1021/ma901444uS. Lee, J. Seo, J. Jeong, C. Lee, M. Song, H. Kim, Y. Kim, Effect of thermal treatment on the performance and nanostructures in polymer solar cells with PTB7-Th: PC 71 BM bulk heterojunction layers. Current Photovoltaic Research. 5. 69-74 (2017).
A. Facchetti, π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733-758 (2011).
10.1021/cm102419zS. Alam, H. Aldosari, C. E. Petoukhoff, T. Váry, W. Althobaiti, M. Alqurashi, H. Tang, J. I. Khan, V. Nádaždy, P. M. Buschbaum, G. C. Welch, F. Laquai, Thermally‐induced degradation in PM6: Y6‐based bulk heterojunction organic solar cells. Adv. Funct. Mater. 34, 2308076 (2024).
10.1002/adfm.202308076E. M. Speller, A. J. Clarke, J. Luke, H. K. H. Lee, J. R. Durrant, N. Li, T. Wang, H. C. Wong, J. S. Kim, W. C. Tsoi, Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A. 7, 23361-23377 (2019).
10.1039/C9TA05235FZ. Zhang, J. Miao, Z. Ding, B. Kan, B. Lin, X. Wan, W. Ma, Y. Chen, X. Long, C. Dou, J. Zhang, J. Liu, L. Wang, Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 10, 3271 (2019).
10.1038/s41467-019-10984-631332173PMC6646397W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang, Y. Wu, W. Wang, J. Guo, Q. Wu, M. Shi, H. Li, C. Yang, J. Min, Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 11, 1218 (2020).
10.1038/s41467-020-14926-532139697PMC7057953J. Xin, C. Zhao, Z. Geng, W. Xue, Z. Chen, C. Song, H. Yan, Q. Liang, Z. Miao, W. Ma, J. Liu, Elucidate the Thermal Degradation Mechanism of Y6‐Based Organic Solar Cells by Establishing Structure‐Property Correlation. Adv. Energy Mater. 2401433 (2024).
10.1002/aenm.202401433E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 10, 61-66 (2009).
10.1016/j.orgel.2008.10.008H. J. Son, H. K. Park, J. Y. Moon, B. K. Ju, S. H. Kim, Thermal degradation related to the PEDOT: PSS hole transport layer and back electrode of the flexible inverted organic photovoltaic module. Sustainable Energy Fuels. 4, 1974-1983 (2020).
10.1039/C9SE00811JA. Al-Ahmad, B. Vaughan, J. Holdsworth, W. Belcher, X. Zhou, P. Dastoor, The role of the electron transport layer in the degradation of organic photovoltaic cells. Coatings. 12, 1071 (2022).
10.3390/coatings12081071J. Kim, Y. Lee, J. Y. Kim, H. J. Song, J. Song, H. Lee, C. Lee, Analysis of the improved thermal stability of Al-doped ZnO-adopted organic solar cells. Appl. Phys. Lett. 118 (2021).
10.1063/5.0032729J. Bertrandie, A. Sharma, N. Gasparini, D. R. Villalva, S. H. K. Paleti, N. Wehbe, J. Troughton, D. Baran, Air-processable and thermally stable hole transport layer for non-fullerene organic solar cells. ACS Appl. Energy Mater. 5, 1023-1030 (2022).
10.1021/acsaem.1c03378- Publisher :Korea Photovoltaic Society
- Publisher(Ko) :한국태양광발전학회
- Journal Title :Current Photovoltaic Research
- Volume : 12
- No :4
- Pages :92-103
- Received Date : 2024-10-15
- Revised Date : 2024-11-27
- Accepted Date : 2024-11-29
- DOI :https://doi.org/10.21218/CPR.2024.12.4.092