All Issue

2024 Vol.12, Issue 1
31 March 2024. pp. 1-5
Abstract
References
1
Sha, W. E. I., Ren, X., Chen, L., Choy, W. C. H., The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106 (22) (2015). DOI: 10.1063/1.4922150 (acccessed 11/27/2023). 10.1063/1.4922150
2
Best Research-Cell Efficiency Chart (accepted: 2023.08). https:// www.nrel.gov/pv/cell-efficiency.html. (accessed)
3
Wang, Z., Fang, J., Mi, Y., Zhu, X., Ren, H., Liu, X., Yan, Y., Enhanced performance of perovskite solar cells by ultraviolet- ozone treatment of mesoporous TiO2. Applied Surface Science, 436, 596-602 (2018). DOI: https://doi.org/10.1016/j.apsusc. 2017.12.085. 10.1016/j.apsusc.2017.12.085
4
Huang, L., Hu, Z., Xu, J., Sun, X., Du, Y., Ni, J., Cai, H., Li, J., Zhang, J., Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer. Solar Energy Materials and Solar Cells, 149, 1-8 (2016). DOI: https://doi.org/10.1016/j.solmat.2015.12.033. 10.1016/j.solmat.2015.12.033
5
Klasen, A., Baumli, P., Sheng, Q., Johannes, E., Bretschneider, S. A., Hermes, I. M., Bergmann, V. W., Gort, C., Axt, A., Weber, S. A. L., et al., Removal of Surface Oxygen Vacancies Increases Conductance Through TiO2 Thin Films for Perovskite Solar Cells. The Journal of Physical Chemistry C, 123 (22), 13458-13466 (2019). DOI: 10.1021/acs.jpcc.9b02371. 10.1021/acs.jpcc.9b0237131205577PMC6559051
6
Méndez, P. F., Muhammed, S. K. M., Barea, E. M., Masi, S., Mora-Seró, I., Analysis of the UV-Ozone-Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. Solar RRL, 3 (9), 1900191 (2019). DOI: https://doi.org/10.1002/solr.201900191. 10.1002/solr.201900191
7
Ma, F., Zhao, Y., Li, J., Zhang, X., Gu, H., You, J., Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 52, 393-411 (2021). DOI: https://doi.org/ 10.1016/j.jechem.2020.04.027. 10.1016/j.jechem.2020.04.027
8
Pathak, M., Mutadak, P., Mane, P., More, M. A., Chakraborty, B., Late, D. J., Rout, C. S., Enrichment of the field emission properties of NiCo2O4 nanostructures by UV/ozone treatment. Materials Advances, 2 (8), 2658-2666 (2021), 10.1039/D1MA00032B. DOI: 10.1039/D1MA00032B. 10.1039/D1MA00032B
9
Islam, R., Chen, G., Ramesh, P., Suh, J., Fuchigami, N., Lee, D., Littau, K. A., Weiner, K., Collins, R. T., Saraswat, K. C., Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Applied Materials & Interfaces, 9 (20), 17201-17207 (2017). DOI: 10.1021/ acsami.7b01629. 10.1021/acsami.7b0162928447776
10
Kitao, M., Izawa, K., Urabe, K., Komatsu, T., Kuwano, S., Yamada, S., Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere. Japanese Journal of Applied Physics, 33 (12R), 6656 (1994). DOI: 10.1143/JJAP.33.6656. 10.1143/JJAP.33.6656
11
Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., et al., Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 4 (8), 1759-1775 (2020). DOI: https://doi.org/10.1016/j.joule. 2020.06.004. 10.1016/j.joule.2020.06.004
12
Ratcliff, E. L., Meyer, J., Steirer, K. X., Garcia, A., Berry, J. J., Ginley, D. S., Olson, D. C., Kahn, A., Armstrong, N. R., Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials, 23 (22), 4988-5000 (2011). DOI: 10.1021/ cm202296p. 10.1021/cm202296p
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 12
  • No :1
  • Pages :1-5
  • Received Date : 2023-11-30
  • Revised Date : 2024-01-08
  • Accepted Date : 2024-01-09