All Issue

2024 Vol.12, Issue 1 Preview Page
31 March 2024. pp. 6-16
Abstract
References
1
M. Schmela, Global market outloolk. (2023).
2
A. Richter, M. Hermle, S. W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 3, 1184-1191 (2013). 10.1109/JPHOTOV.2013.2270351
3
NREL Best Research-Cell Efficiency Chart.
4
D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters 31, 292-294 (1977). 10.1063/1.89674
5
H. Dersch, J. Stuke, J. Beichler, Light-induced dangling bonds in hydrogenated amorphous silicon. Applied Physics Letters 38, 456-458 (1981). 10.1063/1.92402
6
M. Stutzmann, W. B. Jackson, C. C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Physical Review B 32, 23-47 (1985). 10.1103/PhysRevB.32.239936636
7
M. Ohsawa et al., The Role of Hydrogen in the Staebler-Wronski Effect of a-Si:H. Japanese Journal of Applied Physics 24, L838 (1985). 10.1143/JJAP.24.L838
8
X. Cheng, E. S. Marstein, C. C. You, H. Haug, M. D. Sabatino, Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers. Energy Procedia 124, 275-281 (2017). 10.1016/j.egypro.2017.09.299
9
De Wolf, S., et al. "Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces." Physical Review B 83(23): 233301 (2011). 10.1103/PhysRevB.83.233301
10
E. M. El Mhamdi, J. Holovsky, B. Demaurex, C. Ballif, S. De Wolf, Is light-induced degradation of a-Si:H/c-Si interfaces reversible? Applied Physics Letters 104, 252108 (2014). 10.1063/1.4885501
11
R. L. Crabb, Photon Induced Degradation of Electron and Proton Irradiated Silicon Solar Cells. IEEE Transactions on Nuclear Science 20, 243-249 (1973). 10.1109/TNS.1973.4327402
12
H. Hashigami, Y. Itakura, T. Saitoh, Effect of illumination conditions on Czochralski-grown silicon solar cell degradation. Journal of Applied Physics 93, 4240-4245 (2003). 10.1063/1.1559430
13
Soomin Kim et al., An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells. Korean Journal of Materials Research 24, 305~309-305~309 (2014). 10.3740/MRSK.2014.24.6.305
14
K. Bothe, R. Hezel, J. Schmidt, Recombination-enhanced formation of the metastable boron-oxygen complex in crystalline silicon. Applied Physics Letters 83, 1125-1127 (2003). 10.1063/1.1600837
15
T. Saitoh, A review of Japanese R&D for crystalline silicon solar cells. 9, 81-86 (1999).
16
S. R. S. W. Glunz, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaic 7 (2000). 10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.3.CO;2-8
17
J. Schmidt, A. G. Aberle, R. J. C. R. o. t. T. S. I. P. S. C.-. Hezel, Investigation of carrier lifetime instabilities in Cz-grown silicon. 13-18 (1997).
18
T. Schutz-Kuchly, J. Veirman, S. Dubois, D. R. Heslinga, Light-Induced-Degradation effects in boron-phosphorus compensated n-type Czochralski silicon. Applied Physics Letters 96 (2010). 10.1063/1.3334724
19
W. B. Henley, D. A. Ramappa, L. Jastrezbski, Detection of copper contamination in silicon by surface photovoltage diffusion length measurements. Applied Physics Letters 74, 278-280 (1999). 10.1063/1.123280
20
A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron-oxygen complex in crystalline silicon. Progress in Photovoltaics: Research and Applications 16, 135-140 (2008). 10.1002/pip.779
21
Bothe, K., Sinton, R., Schmidt, J., 2005. Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296. https://doi.org/10.1002/pip.58610.1002/pip.586
22
J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon. Physical Review B 69 (2004). 10.1103/PhysRevB.69.024107
23
J. Schmidt, K. Bothe, R. Hezel, Oxygen-related minority-carrier trapping centers in p-type Czochralski silicon. Applied Physics Letters 80, 4395-4397 (2002). 10.1063/1.1483908
24
K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon. Journal of Applied Physics 99, 013701 (2006). 10.1063/1.2140584
25
K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics: Research and Applications 13, 287-296 (2005). 10.1002/pip.586
26
S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, Degradation of carrier lifetime in Cz silicon solar cells. Solar Energy Materials and Solar Cells 65, 219-229 (2001). 10.1016/S0927-0248(00)00098-2
27
J. Adey, R. Jones, D. W. Palmer, P. R. Briddon, S. Öberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells. Physical Review Letters 93, 055504 (2004). 10.1103/PhysRevLett.93.05550415323707
28
H. M. B. Mao-Hua Du, Richard S.Crandall and S.B.Zhang, A New Mechanism for Non-Radiative Recombination at Light-Induced Boron-Oxygen Complexes in Silicon. DOE solar energy Technologies program review meeting, (2005).
29
J. Schmidt, A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon. Journal of Applied Physics 86, 3175-3180 (1999). 10.1063/1.371186
30
S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe, Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. Progress in Photovoltaics: Research and Applications 7, 463-469 (1999). 10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H
31
J. Zhao, A. Wang, M. A. Green, Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates. Progress in Photovoltaics: Research and Applications 8, 549-558 (2000). 10.1002/1099-159X(200009/10)8:5<549::AID-PIP346>3.0.CO;2-Y
32
G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Impact of Hydrogen Concentration on the Regeneration of Light Induced Degradation. Energy Procedia 8, 47-51 (2011). 10.1016/j.egypro.2011.06.100
33
K. Ramspeck et al., in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. (2012).
34
F. Kersten et al. (IEEE).
35
F. Kersten et al., Degradation of multi-crystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 142, 83-86 (2015). 10.1016/j.solmat.2015.06.015
36
C. Chan et al., Modulation of Carrier-Induced Defect Kinetics in Multi-Crystalline Silicon PERC Cells Through Dark Annealing. Solar RRL 1, 1600028 (2017). 10.1002/solr.201600028
37
S. Liu et al., Impact of Dark Annealing on the Kinetics of Light- and Elevated-Temperature-Induced Degradation. IEEE Journal of Photovoltaics 8, 1494-1502 (2018). 10.1109/JPHOTOV.2018.2866325
38
H. C. Sio et al., The Role of Dark Annealing in Light and Elevated Temperature Induced Degradation in p-Type Mono-Like Silicon. IEEE Journal of Photovoltaics 10, 992-1000 (2020). 10.1109/JPHOTOV.2020.2993653
39
D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn, Degradation of Surface Passivation on Crystalline Silicon and Its Impact on Light-Induced Degradation Experiments. IEEE Journal of Photovoltaics 7, 1627-1634 (2017). 10.1109/JPHOTOV.2017.2755072
40
K. Petter et al., Dependence of LeTID on brick height for different wafer suppliers with several resistivities and dopants. 6, 1-17 (2016).
41
C. E. Chan et al., Rapid Stabilization of High-Performance Multicrystalline P-type Silicon PERC Cells. IEEE Journal of Photovoltaics 6, 1473-1479 (2016). 10.1109/JPHOTOV.2016.2606704
42
A. Zuschlag, D. Skorka, G. Hahn, Degradation and regeneration in mc-Si after different gettering steps. Progress in Photovoltaics: Research and Applications 25, 545-552 (2017). 10.1002/pip.2832
43
W. Liu et al., Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nature Energy 7, 427-437 (2022). 10.1038/s41560-022-01018-5
44
T. Niewelt et al., Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon. Journal of Applied Physics 121, 185702 (2017). 10.1063/1.4983024
45
T. Niewelt, W. Kwapil, M. Selinger, A. Richter, M. C. Schubert, Long-Term Stability of Aluminum Oxide Based Surface Passivation Schemes Under Illumination at Elevated Temperatures. IEEE Journal of Photovoltaics 7, 1197-1202 (2017). 10.1109/JPHOTOV.2017.2713411
46
U. Varshney et al., Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon. IEEE Journal of Photovoltaics 9, 601-607 (2019). 10.1109/JPHOTOV.2019.2896671
47
S. Jafari, U. Varshney, B. Hoex, S. Meyer, D. Lausch, Understanding Light- and Elevated Temperature-Induced Degradation in Silicon Wafers Using Hydrogen Effusion Mass Spectroscopy. IEEE Journal of Photovoltaics 11, 1363-1369 (2021). 10.1109/JPHOTOV.2021.3104194
48
F. Kersten, J. Heitmann, J. W. Müller, Influence of Al2O3 and SiNx Passivation Layers on LeTID. Energy Procedia 92, 828-832 (2016). 10.1016/j.egypro.2016.07.079
49
U. Varshney et al., Controlling Light- and Elevated-Temperature-Induced Degradation With Thin Film Barrier Layers. IEEE Journal of Photovoltaics 10, 19-27 (2020). 10.1109/JPHOTOV.2019.2945199
50
D. S. Alona Otaegi), Andreas Schmid, Annika Zuschlag, Juan Carlos Jimeno, Giso Hahn, INFLUENCE OF EMITTER LAYERS ON LETID KINETICS IN MULTICRYSTALLINE SILICON. EUPVSEC 35th, 293-297 (2018).
51
D. Bredemeier, D. C. Walter, J. Schmidt, Possible Candidates for Impurities in mc-Si Wafers Responsible for Light-Induced Lifetime Degradation and Regeneration. Solar RRL 2, 1700159 (2018). 10.1002/solr.201700159
52
T. Niewelt et al., Understanding the light-induced degradation at elevated temperatures: Similarities between multicrystalline and floatzone p-type silicon. Progress in Photovoltaics: Research and Applications 26, 533-542 (2018). 10.1002/pip.2954
53
A. C. N. Wenham et al. (IEEE).
54
J. Schmidt, D. Bredemeier, D. C. Walter, On the Defect Physics Behind Light and Elevated Temperature-Induced Degradation (LeTID) of Multicrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics 9, 1497-1503 (2019). 10.1109/JPHOTOV.2019.2937223
55
D. Chen et al., Hydrogen induced degradation: A possible mechanism for light- and elevated temperature- induced degradation in n-type silicon. Solar Energy Materials and Solar Cells 185, 174-182 (2018). 10.1016/j.solmat.2018.05.034
56
C. Herring, N. M. Johnson, C. G. Van De Walle, Energy levels of isolated interstitial hydrogen in silicon. Physical Review B 64, (2001). 10.1103/PhysRevB.64.125209
57
E. Kobayashi et al., Light-induced performance increase of silicon heterojunction solar cells. Applied Physics Letters 109, 153503 (2016). 10.1063/1.4964835
58
E. Kobayashi et al., Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy Materials and Solar Cells 173, 43-49 (2017). 10.1016/j.solmat.2017.06.023
59
L. Yang, X. Li, W. Zhang, Q. Yang, Q. Wang, On the Kinetics of Light-Induced Enhancement Effect in Silicon Heterojunction Solar Cells. physica status solidi (RRL) - Rapid Research Letters 17, 2200356 (2023). 10.1002/pssr.202200356
60
Kim, S. M., et al., "Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells." Applied Physics Letters 105(8): 083509. (2014). 10.1063/1.4894289
61
A. Herguth and G. Hahn, Journal of Applied Physics 108, 114509 (2010). 10.1063/1.3517155
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 12
  • No :1
  • Pages :6-16
  • Received Date : 2024-02-07
  • Revised Date : 2024-03-14
  • Accepted Date : 2024-03-15