All Issue

2021 Vol.9, Issue 3 Preview Page
September 2021. pp. 84-95
Abstract
References
1
C. Wadia, A. P. Alivisatos, D. M. Kammen, "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environ. Sci. Technol., Vol. 45, pp. 2072-2077 (2009). 10.1021/es801953419368216
2
D. -H. Son, S. -H. Kim, S. -Y. Kim, Y. -I. Kim, J. -H. Sim, S. -N. Park, D. -H. Jeon, D. -K. Hwang, S. -J. Sung, J. -K. Kang, K. -J. Yang, D. -H. Kim, "Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device," J. Mater. Chem. A, Vol. 7, pp. 25279-25289 (2019). 10.1039/C9TA08310C
3
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency," Adv. Energy Mater., Vol. 4, 1301465 (2014). 10.1002/aenm.201301465
4
K. -J. Yang, D. -H. Son, S. -J. Sung, J. -H. Sim, Y. -I. Kim, S. -N. Park, D. -H. Jeon, J. Kim, D. -K. Hwang, C. -W. Jeon, D. Nam, H. Cheong, J. -K. Kang, D. -H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," J. Mater. Chem. A, Vol. 4, pp. 10151-10158 (2016). 10.1039/C6TA01558A
5
Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, S. Guha, "Cu2ZnSnSe4 thin-film solar cells by thermal coevaporation with 11.6% efficiency and improved minority carrier diffusion length," Adv. Energy Mater., Vol. 5, 1401372 (2015). 10.1002/aenm.201401372
6
K. -J. Yang, S. Kim, S. -Y. Kim, K. Ahn, D. -H. Son, S. -H. Kim, S. -J. Lee, Y. -I. Kim, S. -N. Park, S. -J. Sung, D. -H. Kim, T. Enkhbat, J. Kim, C. -W. Jeon. J. -K. Kang, "Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area," Nat. Comm., Vol. 10, 2959 (2019). 10.1038/s41467-019-10890-x31273214PMC6609618
7
F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, J. Park, A. Pu, F. Zhou, X. Liu, J. A. Stride, M. A. Green, X. Hao, "Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact," NPG Asia Mater., Vol. 9, e401 (2017). 10.1038/am.2017.103
8
B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovolt.: Res. Appl., Vol. 21, pp. 72-76 (2013). 10.1002/pip.1174
9
K. -J. Yang, J. -H. Sim, D. -H. Son, D. -H. Kim, G. Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, J. -K. Kang, "Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells," Prog. Photovolt.: Res. Appl., Vol. 23, pp. 1771-1784 (2015). 10.1002/pip.2619
10
A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J. R. Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, "Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition," Sol. Energy Mater. Sol. Cells, Vol. 166, pp. 91-99 (2017). 10.1016/j.solmat.2017.03.002
11
Y. Hou, H. Azimi, N. Gasparini, M. Salvador, W. Chen, L. S. Khanzada, M. Brandl, R. Hock, C. J. Brabec, "Low-temperature solution-processed kesterite solar cell based on in situ deposition of ultrathin absorber layer," ACS Appl. Mater. Interfaces, Vol. 7, pp. 21100-21106 (2015). 10.1021/acsami.5b0446826353923
12
P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%," Phys. Status Solidi RRL, Vol. 10, pp. 583-586 (2016). 10.1002/pssr.201600199
13
S. Yang, J. Zhu, X. Zhang, X. Ma, H. Luo, L. Yin, X. Xiao, "Bandgap optimization of submicron-thick Cu(In,Ga)Se2 solar cells," Prog. Photovolt.: Res. Appl., Vol. 23, pp. 1157-1163 (2015). 10.1002/pip.2543
14
B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, D. Flandre, "Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells," Prog. Photovolt.: Res. Appl., Vol. 22, pp. 1023-1029 (2014). 10.1002/pip.252726300619PMC4540152
15
C. v. Lare, G. Yin, A. Polman, M. Schmid, "Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns," ACS Nano, Vol. 9, pp. 9603-9613 (2015). 10.1021/acsnano.5b0409126348324
16
J. Malmström, S. Schleussner, L. Stolt, "Enhanced back reflectance and quantum efficiency in Cu(In,Ga)Se2 thin film solar cells with a ZrN back reflector," Appl. Phys. Lett., Vol. 85, pp. 2634-2636 (2004). 10.1063/1.1794860
17
A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, M. Topič, "The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells," Thin Solid Films, Vol. 515, pp. 5968-5972 (2007). 10.1016/j.tsf.2006.12.093
18
T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, "Quantitative assessment of optical gain and loss in submicron-textured CuIn1−xGaxSe2 solar cells fabricated by three-stage coevaporation," Phys. Rev. Applied, Vol. 2, 034012 (2014). 10.1103/PhysRevApplied.2.034012
19
J. K. Larsen, H. Simchi, P. Xin, K. Kim, W. N. Shafarman, "Backwall superstrate configuration for ultrathin Cu(In,Ga)Se2 solar cells," Appl. Phys. Lett., Vol. 104, 033901 (2014). 10.1063/1.4862651
20
M. Gloeckler, J. R. Sites, "Potential of submicrometer thickness solar cells," J. Appl. Phys., Vol. 98, 103703 (2005). 10.1063/1.2128054
21
U. Rau, "Tunneling-enhanced recombination in Cu(In,Ga)Se2 heterojunction solar cells," Appl. Phys. Lett., Vol. 74, pp. 111-113 (1999). 10.1063/1.122967
22
G. Yin, V. Brackmann, V. Hoffmann, M. Schmid, "Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature," Sol. Energy Mater. Sol. Cells, Vol. 132, pp. 142-147 (2015). 10.1016/j.solmat.2014.08.045
23
B. Vermang, V. Fjällström, J. Pettersson, P. Salomé, M. Edoff, "Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts," Sol. Energy Mater. Sol. Cells, Vol. 117, pp. 505-511 (2013). 10.1016/j.solmat.2013.07.025
24
M. Troviano, K. Taretto, "Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption," Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 821-828 (2011). 10.1016/j.solmat.2010.10.028
25
J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, "Device modeling and simulation of the performance of Cu(In1−x,Gax)Se2 solar cells," Solid-State Electron., Vol. 48, pp. 73-79 (2004). 10.1016/S0038-1101(03)00289-2
26
S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, "CIGS absorbers and processes," Prog. Photovolt.: Res. Appl., Vol. 18, pp. 453-466 (2010). 10.1002/pip.969
27
K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, O. Yamase, "Yield issues on the fabrication of 30 cm x 30 cm sized Cu(In,Ga)Se2-based thin-film modules," Sol. Energy Mater. Sol. Cells, Vol. 75, pp. 171-178 (2003). 10.1016/S0927-0248(02)00144-7
28
J. Pettersson, T. Törndahl, C. Platzer-Björkman, A. Hultqvist, M. Edoff, "The influence of absorber thickness on Cu(In,Ga)Se2 solar cells with different buffer layers," IEEE J. Photovoltaics, Vol. 3, pp. 1376-1382 (2013). 10.1109/JPHOTOV.2013.2276030
29
M. Powalla, B. Dimmler, "Scaling up issues of CIGS solar cells," Thin Solid Films, Vol. 361-362, pp. 540-546 (2000). 10.1016/S0040-6090(99)00849-4
30
M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, "Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells," Energy Environ. Sci., Vol. 7, pp. 1029-1036 (2014). 10.1039/C3EE42541J
31
Y. Ren, J. J. S. Scragg, C. Frisk, J. K. Larsen, S. -Y. Li, C. Platzer-Björkman, "Influence of the Cu2ZnSnS4 absorber thickness on thin film solar cells," Phys. Status Solidi A, Vol. 212, pp. 2889-2896 (2015). 10.1002/pssa.201532311
32
K. -J. Yang, J. -H. Sim, D. -H. Son, Y. -I. Kim, D. -H. Kim, D. Nam, H. Cheong, S. Kim, J. Kim, J. -K. Kang, "Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells," Nano Energy, Vol. 35, pp. 52-61 (2017). 10.1016/j.nanoen.2017.03.025
33
C. J. Hages, N. J. Carter, R. Agrawal, T. Unold, "Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1-x)4 and Cu2Zn(SnyGe1-y)(SxSe1-x)4," J. Appl. Phys., Vol. 115, 234504 (2014). 10.1063/1.4882119
34
H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, Y. Yang, "The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties," Adv. Funct. Mater., Vol. 23, pp. 1466-1471 (2013). 10.1002/adfm.201201732
35
J. J. Scragg, "Copper zinc tin sulfide thin films for photovoltaics" (Springer, New York, 2011). 10.1007/978-3-642-22919-0
36
J. Kim, G. Y. Kim, D. -H. Son, K. -J. Yang, D. -H. Kim, J. -K. Kang, W. Jo, "High photo-conversion efficiency Cu2ZnSn(S,Se)4 thin-film solar cells prepared by compound-precursors and metal-precursors," Sol. Energy Mater. Sol. Cells, Vol. 183, pp. 129-136 (2018). 10.1016/j.solmat.2018.03.050
37
B. D. Anderson, J. B. Tracy, "Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange," Nanoscale, Vol. 6, pp. 12195-12216 (2014). 10.1039/C4NR02025A25051257
38
K. -J. Yang, S. Kim, J. -H. Sim, D. -H. Son, D. -H. Kim, J. Kim, W. Jo, H. Yoo, J. Kim, J. -K. Kang, "The alterations of carrier separation in kesterite solar cells," Nano Energy, Vol. 52, pp. 38-53 (2018). 10.1016/j.nanoen.2018.07.039
39
J. J. Scragg, J. T. Wätjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Björkman, "A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells," J. Am. Chem. Soc., Vol. 134, pp. 19330-19333 (2012). 10.1021/ja308862n23146047
40
J. T. Wätjen, J. J. Scragg, T. Ericson, M. Edoff, C. Platzer-Björkman, "Secondary compound formation revealed by transmission electron microscopy at the Cu2ZnSnS4/Mo interface," Thin Solid Films, Vol. 535, pp. 31-34 (2013). 10.1016/j.tsf.2012.11.079
41
S. -Y. Kim, D. -H. Son, Y. -I. Kim, S. -H. Kim, S. Kim, K. Ahn, S. -J. Sung, D. -K. Hwang, K. -J. Yang, J. -K. Kang, D. -H. Kim, "Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors," Nano Energy, Vol. 59, pp. 399-411 (2019). 10.1016/j.nanoen.2019.02.063
42
S. -Y. Kim, S. -H. Kim, S. Hong, D. -H. Son, Y. -I. Kim, S. Kim, K. Ahn, K. -J. Yang, D. -H. Kim, J. -K. Kang, "Secondary phase formation mechanism in the Mo-back contact region during sulfo-selenization using a metal precursor: effect of wettability between a liquid metal and substrate on secondary phase formation," ACS Appl. Mater. Interfaces, Vol. 11, pp. 23160-23167 (2019). 10.1021/acsami.9b0396931252489
43
S. Chen, A. Walsh, X. G. Gong, S. H. Wei, "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers," Adv. Mater., Vol. 25, pp. 1522-1539 (2013). 10.1002/adma.20120314623401176
44
B. Shin, N. A. Bojarczuk, S. Guha, "On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact," Appl. Phys. Lett., Vol. 102, 091907 (2013). 10.1063/1.4794422
45
J. J. Scragg, P. J. Dale, D. Colombara, L. M. Peter, "Thermodynamic aspects of the synthesis of thin-film materials for solar cells," ChemPhysChem, Vol. 13, pp. 3035-3046 (2012). 10.1002/cphc.20120006722532426
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 9
  • No :3
  • Pages :84-95
  • Received Date :2021. 04. 13
  • Revised Date :2021. 04. 23
  • Accepted Date : 2021. 04. 25