All Issue

2022 Vol.10, Issue 2 Preview Page
30 June 2022. pp. 39-48
Abstract
References
1
D. Shin, B. Saparov, D.B. Mitzi, "Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials," Adv. Energy Mater. 7(11), 1602366 (2017). 10.1002/aenm.201602366
2
C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. M. Cairney, N. J. Ekins-Daukes, Z. Hameiri, J. A. Stride, S. Chen, M. A. Green, X. Hao, "Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment," Nat. Energy, 3, 764-772 ( 2017). 10.1038/s41560-018-0206-0
3
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency," Adv. Energy Mater., 4, 1301465 (2014). 10.1002/aenm.201301465
4
W. Shockley, H. J. Queisser, "Detailed balance limit of efficiency of p-n Junction solar cells," J. Appl. Phys., 32, 510-519 (1961). 10.1063/1.1736034
5
W. Ki, H. W. Hillhouse, "Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent," Adv. Energy Mater., 1, 732-735 (2011). 10.1002/aenm.201100140
6
S. Saha, "A status review on Cu2ZnSn(S,Se)4 based thin-film solar cells," Int. J. Photoenergy, 2020, ID 3036413 (2020). 10.1155/2020/3036413
7
H. Yoo, J. S. Jang, S. W. Shin, J. Lee, J. Kim, D. M. Kim, I. J. Lee, B. H. Lee, J. Park, J. H. Kim, "Influence of the reaction pathway on the defect formation in a Cu2ZnSnSe4 thin film," ACS Appl. Mater. Interfaces, 13, 13425-13433 (2021). 10.1021/acsami.1c0130733706505
8
Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, "Tunable band gap Cu2ZnSnS4XSe4(1−X) nanocrystals: experimental and first-principles calculations," Cryst. Eng. Comm. 13, 2222-2226 (2011). 10.1039/c0ce00779j
9
T. K. Todorov, K. B. Reuter, D. B. Mitzi. High‐efficiency solar cell with earth‐abundant liquid‐processed absorber, Adv. Mater., 22, E156-E159 (2010). 10.1002/adma.20090415520641095
10
S. Ji, T. Shi, X. Qui, J. Zhang, G. Xu, C. Chen, Z. Jiang, C. Ye, "A route to phase controllable Cu2ZnSn(S1−xSex)4 nanocrystals with tunable energy bands," Sci. Rep., 3, 2733 (2013). 10.1038/srep0273324061108PMC3781399
11
B. Shin, O. Gubawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber," Prog. Photovolt: Res. Appl., 21, 72-76 (2013). 10.1002/pip.1174
12
S. W. Shin, I. Y. Kim, K. V. Gurav, C. H. Jeong, J. H. Yun, P. S. Patil, J. Y. Lee, J. H. Kim, "Band gap tunable and improved microstructure characteristics of Cu2ZnSn(S1-xSex)4 thin films by annealing under atmosphere containing S and Se," Curr. Appl. Phys., 13, 1837-1843 (2013). 10.1016/j.cap.2013.06.022
13
R. B. V. Chalapathy, G. S. Jung, B. T. Ahn, "Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells," Sol. Energy Mater. Sol. Cells, 95, 3216-3221 (2011). 10.1016/j.solmat.2011.07.017
14
D. H. Son, S. H. Kim, S. Y. Kim, Y. I. Kim, J. H. Sim, S. N. Park, D. H. Jeon, D. K. Hwang, S. J. Sung, J. K. Kang, K. J. Yang, D. H. Kim, "Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device," J. Mater. Chem. A, 7, 25279-25289 (2019). 10.1039/C9TA08310C
15
K. J. Yang, D. H. Son, S. J. Sung, J. H. Sim, Y. I. Kim, S. N. Park, D. H. Jeon, J. S. Kim, D. K. Hwang, C. W. Jeon, D. Nam, H. Cheong, J. K. Kang, D. H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," J Mater. Chem. A, 4 10151-10158 (2016). 10.1039/C6TA01558A
16
X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, L. H. Wong, "Cu2ZnSn(S, Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization," Sol. Energy Mater. Sol. Cells, 124, 55-60 (2014). 10.1016/j.solmat.2014.01.029
17
M. He, K. Sun, M. P. Suryawanshi, J. Li, X. Hao, Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review," J. Energy Chem., 60, 1-8 (2021). 10.1016/j.jechem.2020.12.019
18
M. Ravindrian, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell - A novel approach on the device structure and material modeling for CZTS based photovoltaic device, Renew. Sust. Energy Rev., 94, 317-329 (2018). 10.1016/j.rser.2018.06.008
19
G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D. H. Kim, D. K. Hwang, S. J. Sung, J. K. Kang, "Effect of selenization on local current and surface potential of sputtered Cu2ZnSn(S,Se)4 thin-films with 8% conversion efficiency," IEEE 39th Photovoltaic Specialist Conference, Tampa Bay, FL, 383-385, (2013).
20
R. Munir, G. S. Jung, Y. M. Ko, B. T. Ahn, "Characterization of Cu2ZnSnSe4 thin films selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe stacks," Kor. J. Mater. Res., 23, 183-189 (2013). 10.3740/MRSK.2013.23.3.183
21
D. Lu, C. Yue, S. Luo, Z. Li, W. Xue, X. Qi, J. Zhong, "Phase controllable synthesis of SnSe and SnSe2 films with tunable photoresponse properties," Appl. Surf. Sci., 541, 148615 (2021). 10.1016/j.apsusc.2020.148615
22
P. A. Fernandes, P. M. Salome, A. F. da Cunha, "A study of ternary Cu2SnS and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors," J. Phys. D: Appl. Phys. 43, 215403 (2010). 10.1088/0022-3727/43/21/215403
23
B. Mineceva-Sukarova, M. Najdoski, I. Grozdanov, C. J. Chunilall, "Raman spectra of thin solid films of some metal sulphides," J. Mol. Struct., 410-411, 267-270 (1997). 10.1016/S0022-2860(96)09713-X
24
P. A. Fernandes, P. M. P. Saloméa, A. F. da Cunha, "Study of polycrystalline Cu2ZnSnS4 films by Raman scattering," J. Alloy Comp., 509, 7600-7606 (2011). 10.1016/j.jallcom.2011.04.097
25
D. Nam, A. S. Opanasyuk, P. V. Koval, A. G. Ponomarev, A. R. Jeong, G. Y. Kim, W. Jo, H. Cheong, "Composition variations in Cu2ZnSnSe4 thin films analyzed by x-ray diffraction, energy dispersive x-ray spectroscopy, particle induced x-ray emission, photoluminescence, and Raman spectroscopy," Thin Solid Films, 562, 109-113 (2014). 10.1016/j.tsf.2014.03.079
26
K. M. Kim, H. Tampo, H. Shinata, S. Niki, "Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications," Thin Solid Films, 536, 111-114 (2013). 10.1016/j.tsf.2013.03.119
27
T. Tanaka, T. Sueishi, K. Saito, Q, Cui, M. Nishio, K. M. Yu, W. Walukeiwicz, "Existence and removal of Cu2Se second phase in co-evaporated Cu2ZnSnSe4 thin films," J. Appl. Phys. 111, 053522 (2012). 10.1063/1.3691964
28
M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, "Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications," Thin Solid Films, 519, 7403-7406 (2011). 10.1016/j.tsf.2010.12.099
29
D. G. Mead and J. C. Irwin, "Raman spectra of SnS2 and SnSe2," Solid State Commun., 20, 885-887 (1976). 10.1016/0038-1098(76)91297-7
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 10
  • No :2
  • Pages :39-48
  • Received Date : 2022-02-17
  • Revised Date : 2022-03-18
  • Accepted Date : 2022-03-24