All Issue

2024 Vol.12, Issue 3
30 September 2024. pp. 49-54
Abstract
References
1

Korea Energy Agency (KEA), 2022 New and Renewable energy supply statistics final results (2023. 12).

2

P. R. Brown, F. M. O'Sulivan, Shaping photovoltaic array output to align with changing wholesale electricity price profiles. Appl. Energy. 256, 113734 (2019).

10.1016/j.apenergy.2019.113734
3

M. S. Hossain, H. Mahmood, Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. IEEE. ISSN 2169-3536, DOI 10.1109/ACCESS.2020.3024901 (2020).

10.1109/PECI48348.2020.9064654
4

KPX, Electricity market operation rules.

5

G. M. Pitra, K. S. Sastry Musti, Dcuk curve with renewable energies and storage technologies, 13th International Conference on Computational Intelligence and Communication Networks, Lima, Peru, doi:10.1109/CICN51697.2021.13 (2021).

10.1109/CICN51697.2021.9574671
6

K. S. Kwon, Review of the special act on the promotion of distributed energy (Proposal), KLGLA, Vol. 77, No. 23-1 (2023).

7

W. S. Kim, H. H. Jo, Impact of photovoltaic generation expansion on Korea's electricity power system and the solution: Focusing on power system stability and supply and demand stability. KJECON. 27, 23-65 (2020).

10.46228/KJE.27.1.2
8

H. Huang, J. Xu, Z. Peng, S. Yoo, D, Yu, D. Huang, H. Qin, Cloud motion estimation for short term solar irradiation prediction, SmartGrid Communications IEEE International Conference, pp. 696-701 (2013).

10.1109/SmartGridComm.2013.6688040
9

J. J. Song, Y. S. Jeong, S. H. Lee, Analysis of prediction model for solar power generation. J. of Digital Convergence. 12, 243-248 (2014).

10.14400/JDC.2014.12.3.243
10

K. D. Kim, The development of the short term predict model for solar power generation. KSES. Vol. 33, No. 6 (2013).

10.7836/kses.2013.33.6.062
11

H. J. Na, K. S. Kim, Study on generation volume of floating solar power using historical insolation data. JKSCE. 43, 249-258 (2023).

12

A. Mohammad, F. Mahjabeen, Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. J. Multidiscip. Res. 2, 117-127 (2023).

10.47709/ijmdsa.v2i1.2599
13

C. L. Sergio, M. C. Ricardo, C. David, A. George, Deep and machine learning models to forecast photovoltaic power generation. Energies. 16, 4097 (2023).

10.3390/en16104097
14

J. I. Lee, W. K. Park, I. W. Lee, S. H. Kim, Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy. KIEEME. 26, 335-363 (2022).

15

F. Antonanzas-Torres, R. Urraca, J. Polo, O. Perpinan-Lamigueiro, R. Escobar , Clear sky solar irradiance models: A review of seventy models. Renewable Sustainable Energy Rev. 107, 374-387 (2019).

10.1016/j.rser.2019.02.032
16

J. H. Kim, M. H. Kim, O. H. Kwon, Y. J. Seok, J. W. Jeong, Generation of monthly averaged horizontal radiation based on a regional clearness estimatimg model. KSES. 30 (2010).

17

Y. T. Lee, D. H. Kim, W. S. Sin, C. K. Kim, H. G. Kim, S. W. Han, A comparison of machine learning models in photovoltaic power generation forecasting. KIIE. 47, 444-458 (2021).

10.7232/JKIIE.2021.47.5.444
Information
  • Publisher :Korea Photovoltaic Society
  • Publisher(Ko) :한국태양광발전학회
  • Journal Title :Current Photovoltaic Research
  • Volume : 12
  • No :3
  • Pages :49-54
  • Received Date : 2024-08-02
  • Revised Date : 2024-08-28
  • Accepted Date : 2024-09-02